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INTRODUCTION 

Microscopic imperfectlons in graphite fiber epoxy composites 

may be introduced during both fabrication and service; The tendency 

of graphite fiber composites to fail in a quasi-brittle mode (as 

defined by the absence of a substantial non1 inear region in the 

stress-strain curve) makes these composites more sensitive than 

many metals to microscopic imperfect ions. In fatigue, failure has 

been described as being “1 ike sudden death; that is, the fatigue 

failure occurs without any visible evidence of damage” [l]. Thus, 

any means of nondestructively monitoring fatigue damage or predicting 

fatigue behavior of graphite fiber composites is likely to enhance 

their effective use. The purpose of this report is to present the 

results of an experimental study to investigate the ultrasonic atten- 

uation and velocity as a function of the fatigue state of a graphite 

fiber composite subjected to transfiber compression-compression 

loading. 

Fatigue of Composi tes 

Papers on fatigue of composites deal with a broad range of 

topics including damage initiation and growth [2-51; and the effects 

on fatigue behavior of ho1 es [5-81 , loading frequency [6] , notches 

[7,9-121, environment [6,13-151, compression loading [9,16,171, 

compression load excursion [18], and fabrication [lg-221. 
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The majority of fatigue research has been on tens 

fatlgue of fiber-controlled specimens. However, in an 

develop a fatigue failure theory, Sims and Brodon 1231 

ically with situations in which the matrix contributes 

ion-tension 

attempt to 

dealt specif- 

significantly 

fatigue strength. A to 1 

fa ilure criterion which 

ta lned by fatiguing off- 

found that [?14.5/‘45/0/0]~ graphite epoxy laminates in compression or 

so, Hashin and Rotem [241 proposed a fatigue 

in part is expressed in terms of data ob- 

axis unidirectional specimens, Bevan [8] 

tension fatigue sustained 80% of their static strength for 10' cycles 

whi le [?45/?45/90/90] s laminate 

static strength fcr 10 
6 

cycles 

difference was due to the matr 

s sustained only about 60% of their 

He concluded that this percentage 

x - control led failure of the latter 

laminates. Other attempts to relate static and fatigue strengths 

include investigations by Ryder and Walker [I81 who noted that resid- 

ual static strength degraded rapidly due to fatigue cycling; Awerbuch 

and Hahn [l] who observed that static strength decreased rapidly 

immediately before fatigue failure in unidirectional graphite epoxy 

compos i tes; and Porter [25] who found that for a range of flaw types, 

there exists a relationship between initial static strength and 

fatigue strength. 

NDE of Fatigue Damage and Ultrasonics in Composites - 

Adams et al. [26-291 have stated that changes in lower struc- 

tural natural frequencies can be used to locate and roLlghly quantify 

damage. Also, Schultz and Warwick [30] found a correlation between 

the amount of fatigue damage and the imaginary part of the composite 
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complex modulus. On the other hand, by observing changes in dynamic 

mechanical properties, Nielsen [31] was not able to detect fatigue 

damage in various filled polymers, 

Based on the hypothesis that wave propagation efficiency is 

affected by microstructure and microf laws, Vary ‘et al. [32-341 have 

proposed an ultrasonic quantity called the stress wave factor which 

has been positively correlated with the tensile strength and the 

interlaminar shear strength of graphite fiber composites. In testing 

graphite fiber polyimide composites, Hayford et al, [35] correlated 

the initial attenuation and the shear strength, 

To our knowledge, there has been no work reported on the rela- 

tionship between ultrasonic parameters and the fatigue state of 

fiber reinforced composites, In fact, very little has been done in 

this area for any material. True11 and Hikata [36] monitored atten- 

uation changes as a function of the number of fatigue cycles on 

various aluminum alloys. They concluded that the form of the 

attenuation-fatigue cycles curve depended on the magnitude of the 

stress, the cycl ic frequency, and the mode of loading. Unfortunately, 

there was no apparent attempt to correlate the attenuation with the 

S-N curves of the various alloys, However, they were able to deduce 

being that an increase 

ic fa i lure. The point 

varied from 30% to 

some genera 1 trends, the primary observation 

in attenuat ion always occurred prior to cycl 

at which th is increased attenuation occurred 

approximate ly 100% of the failure cycles, 
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EXPERIMENTS 

Material 

The specimens were unidirectional Hercules AS/3501-6 graphite 

fiber epoxy composites. In order to introduce a range in the prop- 

,erties of the specimens, two laminates were fabricated with slightly 

different procedures. The Hercules fabrication specifications [37] 

prescribe the following temperatures: (1) a precure temperature of 

135°C during which pressure is applied; (2) a cure temperature of 

177°C; and (3) a postcure temperature of 177°C with no pressure. 

One laminate (No. 1) was fabricated according to these specifica- 

tions with the single exception that the precure temperature was 

149”C, 14°C higher than the specified temperature. A second laminate 

(No. 2) was fabricated exactly in accordance with the specifications. 

Attenuation>locity and Fatigue Tests 

The exper iments consisted of a 1 terna tel y compress ion-compress ion 

(C-C) fatiguing specimens and measuring their narrow band longitudinal 

wave group velocity and attenuation properties. The velocity and 

attenuation measurements were typically made at intervals of 3 x IO4 

fatigue cycles. The specimens are sketched in Fig, 1 where the prin- 

cipal directions are indicated. The attenuation and velocity measure- 

ments were recorded at four narrow band center frequencies: 0.5 MHz, 

1 .O MHz, 1 .5 MHz and 2.0 MHz. 
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The specimens were subjected to sinusoidal compression-compression 

fatlgue along the x2 direction with a peak-to-peak stress amplitude 
u 

of (5 
max 

max 
to --7j- . Tests were conducted for omax at 0.20f, 0.40~’ 

0.60~ and 0.80~ where of was the prefatigued static compressive frac- 

ture stress. The value of of used in computing the fatigue stress 

levels always corresponded to the value of of for the laminate from 

which the specimen was machined. Al 1 tests were conducted at a 

loading frequency of 30 Hz. 

Equipment 

A schematic of the through-transmission attenuation and velocity 

measuring experimental system is shown in Fig. 2.+ The transducers 

were Acoustic Emission Technology (AET) FC-500 transducers and the 

couplant was AET SC-~ resin. The peak-to-peak input voltage was 

100 volts. A pressure of 2.5 x 105 N/m2 (36 psi) was applied to the 

transducer-specimen interface. As reported in [38], this pressure 

exceeded the “saturation pressure”, which is defined as the minimum 

transducer-specimen interface pressure which results in the maximum 

output signal amp1 itude, all other parameters being held constant. 

The compression fatigue testing was conducted on a Baldwin Model 

SF-1U Universal Fatigue Machine. 

‘More detai 1s of this system are given in [38], 
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RESULTS AND D I SCUSS I ON 

Laminate No. 1, as identified above, had a prefatigued static 

compressive fracture stress of 145 MN/m2 and laminate No. 2 had a 

prefatigued static compressive fracture stress of 180 MN/m2, Thus, 

the 14°C change in the precure temperature produced a significant 

effect on the prefatigued static compressive fracture stress. 

Nine specimens were randomly selected from laminate No, 1 and 

three each were tested at 0.2~ f, 0.40~ and 0.60~' respectively. 

The group velocity was frequency-independent and was substantially 

the same for all the specimens (2.4 x lo3 m/set, whereas the atten- 

uation was frequency-dependent and varied significantly (to be 

discussed below) from specimen to specimen. Despite these differ- 

ences, no change in either the attenuation or the group velocity of 

individual specimens was revealed up to lo6 cycles where the tests 

were discontinued. Also, no fatigue fractures occurred and no 

material degradation was vi sible under microscopic examination. 

Twelve additional specimens from laminate No, 1 and three 

specimens from laminate No. 2 were randomly se1 ected and tested at 

0.80~. As in the tests described above, the group velocity again 

remained constant at 2.4 x lo3 m/set. In general, the attenuation 

of individual specimens at the four monitored frequencies increased 

by 5% to 10% .of their respective prefatigued values which is defined 

as “initial attenuation”. This increase in attenuation, which 

tended to be larger for specimens with higher initial attenuation, 
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often occurred within the first 50% of the fatigue life; however, 

no distinct trend was observed. Fig. 3 is a plot of the attenua- 

tion at 2.0 MHz versus fatigue cycles for the specimens from 

laminate No. 1. Attenuation versus fatigue cycles curves for 

0.5 MHz, 1.0 MHz and 1.5 MHz display similar trends and are given 

in [391, it appears from these curves that the changes in attenua- 

tion do not provide a precursor of fracture. 

The initial attenuation, cycles to fatigue fracture, static 

fracture stress and fabrication data for specimens tested at 0.8~1~ 

are summarized in the Table below. For laminate No. 1 the speci- 

mens are ordered in accordance with the number of fatigue cycles to 

fracture, None of the specimens from laminate No. 2 failed where 

in accordance with [g], the fatigue limit was defined as 5 x 10 6 

cycles. (However, as noted in the Table, one of the specimens was 

returned to the fatigue machine and subsequently failed at 30.2 x lo6 

cycles.) In addition to the difference in af for laminates No. 1 

and No. 2 cited earlier, the differences in the initial attenuation 

values for the two laminates are considerable. 

The inverse relationship between prefatigued fracture stress 

and initial attenuation describ.ed in [35] is consistent with the 

data in the Table. Further, there appears to be a correlation 

between initial attenuation and cycles to fracture. And,the corre- 

lation improves with increasing wave frequency. At ultrasonic 

frequencies of 1.5 MHz and 2.0 MHz, there appear to be “upper cut- 

off” initial attenuation values (-5.8 neper/cm at 1.5 MHz and 
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59.4 neper/cm at 2.0 MHz), above which failure occurred either 

during the static preload or before the dynamic load had reached 

its steady-state value during the acceleration period (-2000 cycles) 

of the fatigue loading. The “upper cut-off” value of -9.4 neper/cm 

is apparent in Fig. 4 where the initial attenuation at 2 MHz versus 

cycles to failure for specimens from laminate No. 1 only is plotted. 

The initial attenuation at 2 MHz versus cycles to failure for 

specimens from laminates No. 1 and 2 is plotted in Fig. 5. Fig. 5 

further suggests the existence of a “lower cut-off” value of atten- 

uation, below which specimens may be screened for survival to the 

fatigue 1 imit. 
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CONCLUSIONS 

Hercules AS/3501-6 graphite fiber epoxy composites were 

alternately compression-compression fatigued and monitored using 

ultrasonic longitudinal waves. A small change (14°C) in the pre- 

cure temperature resulted in significant changes in the prefatigued 

static compressive fracture stress uf, the initial attenuation and 

the number of cycles to failure at amax = 0.8~1~. The correlation 

between prefatigued static fracture stress and initial attenuation 

found in [35] is supported by the data obtained here. No changes 

in attenuation or velocity as well as no fatigue fractures occurred 

for specimens fatigued to lo6 cycles at maximum stress levels at or 

below 0.60~. 

During C-C fatigue when omax = 0.8~~’ there is generally a 

5% to 10% increase in attenuation; however, this increase does not 

appear to be a fracture precursor. It is important to note that 

the attenuation measurements were intermittent at about 3 x 104 cycle 

intervals and that the possibility of an attenuation precursor 

within a few cycles of failure cannot be discounted. The initial 

attenuation at 1.5 MHz and 2.0 MHz appears to be a good indicator 

of the relative survivability in the fatigue environment. There 

appear to be ultrasonic frequency-dependent “upper cut-off” attenu- 

ation values which define a minimal fatigue 1 ife and “lower cut-off” 

attenuation values which define a fatigue 1 ife 1 imi t. 
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TABLE Summary of Initial Attenuation, Fatigue, Static Fracture Stress, and Fabrication 
Data for Specimens Tested in C-C Fatigue at 0.81~~ 

Specimen 
Number 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

201 

202 

203 

f 
Initial Attenuation 

(neper/cm) 
0.5 MHz 1.0 MHz 1.5 MHz 2,0 MHz 

1.62 3.47 7.37 11.42 

1.53 2.91 6.13 9.65 

1.40 2.80 6.17 9.83 

1.44 3.25 6.69 10.74 

1.44 3.03 6.46 9,83 

1.44 2.69 5.64 9.09 

1.40 2.74 5.73 9.14 

1.25 2.41 5.68 9.14 

1.36 2.74 5.44 8.84 

1.57 2.85 5.56 8.84 

1.32 2.56 5.18 8.58 

1.22 2.22 4.72 7.56 

C-C Cycles to Fracture 
eu max = 0.8~~ 

(IO4 Cycles) 

0 

0 

0.1 

0,3 

1.1 

2.7 

3.1 

6.0 

13.1 

13.9 

20.4 

24.4 

Prefatigued Static 
Compressive Fracture 

Stress Uf 

f 
= 145MN 

m2 

21,000 psi) 

0.625 0.882 1.45 2.22 500.0" ; 

0.690 0.941 1.70 2.65 500.0;'; j \ 
af 

r 180 !!!! 
m2 

Fabrication 
Procedure 

Laminate fabri- 
cated in accordance 
with [37] except 
the precure tem- 
perature was 149°C 
(3OO'F) instead of 
the specified 
temperature 135°C 
(275'F). 

/ 

J ..I 

Laminate fabri- I 

cated completely ; 
(26,lOoO psi) I in accordance 

0.700 0.941 1.86 2.78 500,O" I with [37]. I 

"Specimen did not fail; test stopped at 5 x 10' cycles. Postfatigued attenuation values were: 
Specimen 202 - 1.00 (1.0 MHZ), 1.80 (1.5 MHZ), 2.82 (2.0 MHZ) 
Specimen 203 - .39 (1.0 MHz), 1.94 (1.5 MHz), 2.92 (2.0 MHz). 

Specimen 202 was subsequently retested and failed at a total of 30.2 x IO6 cycles. 



X2 1 Loadinq Direction) 

Laminoe 

X3- 

Laminate Direction 
(Wave Propagation 

Direction 1 

F i ber Direction 

Fig. 1 Schematic of unidirectional graphite epoxy composite 
laminate showing principal directions. 
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Fig. 2 Schematic of attenuation and velocity measuring experimental system. 



S Pecimen Leaend 
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. . . . . . . . I. 106 
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.I.-. 108 
----jog 
"-..-. 1 10 
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-a-’ 
C--.---.---.---.---*---.C--.- 112 ,-----.---.-mow.-- C-’ 

7 I I I I I I I 
28 x IO4 4 a 12 I6 20 24 

Loading Cycles 

Fig. 3 Attenuation at 2.0 MHz versus loading cycles for transfiber compress 
fatigue of laminate No. 1 specimens at amax = 0.8 af. 

ion-compress ion 
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Fig. 4 Initial attenuation at 2.0 MHz versus cycles to failure for transfiber 
compression-compression fatigue of laminate No. 1 specimens at omax = 0.8 of. 
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